Layered Approach Using Conditional Random Fields for Intrusion Detection

Technology Used: Java Dependable Secure Computing, 2010 Intrusion detection faces a number of challenges; an intrusion detection system must reliably detect malicious activities in a network and must perform efficiently to cope with the large amount of network traffic. In this paper, we address these two issues of Accuracy and Efficiency using Conditional Random Fields and Layered Approach. We demonstrate that high attack detection accuracy can be achieved by using Conditional Random Fields and high efficiency by implementing the Layered Approach. Experimental results on the benchmark KDD ’99 intrusion data…

Read More

Localized Multicast Efficient and Distributed Replica Detection in Large-Scale Sensor Networks

Technology Used: Dot Net 2010 Due to the poor physical protection of sensor nodes, it is generally assumed that an adversary can capture and compromise a small number of sensors in the network. In a node replication attack, an adversary can take advantage of the credentials of a compromised node to surreptitiously introduce replicas of that node into the network. Without an effective and efficient detection mechanism, these replicas can be used to launch a variety of attacks that undermine many sensor applications and protocols. In this paper, we present…

Read More

VEBEK Virtual Energy-Based Encryption And Keying For Wireless Sensor Networks

Technology Used: Dot Net 2010 Designing cost-efficient, secure network protocols for Wireless Sensor Networks (WSNs) is a challenging problem because sensors are resource-limited wireless devices. Since the communication cost is the most dominant factor in a sensor’s energy consumption, we introduce an energy-efficient Virtual Energy-Based Encryption and Keying (VEBEK) scheme for WSNs that significantly reduces the number of transmissions needed for rekeying to avoid stale keys. In addition to the goal of saving energy, minimal transmission is imperative for some military applications of WSNs where an adversary could be monitoring…

Read More

Efficient and Dynamic Routing Topology Inference from End-To-End Measurements

Technology Used: Java 2010 Inferring the routing topology and link performance from a node to a set of other nodes is an important component in network monitoring and application design. In this paper we propose a general framework for designing topology inference algorithms based on additive metrics. The framework can flexibly fuse information from multiple measurements to achieve better estimation accuracy. We develop computationally efficient (polynomial-time) topology inference algorithms based on the framework. We prove that the probability of correct topology inference of our algorithms converges to one exponentially fast…

Read More

A Dynamic En-Route Filtering Scheme For Data Reporting In Wireless Sensor Networks

Technology Used: Java 2010 In wireless sensor networks, adversaries can inject false data reports via compromised nodes and launch DoS attacks against legitimate reports. Recently, a number of filtering schemes against false reports have been proposed. However, they either lack strong filtering capacity or cannot support highly dynamic sensor networks very well. Moreover, few of them can deal with DoS attacks simultaneously. In this paper, we propose a dynamic en-route filtering scheme that addresses both false report injection and DoS attacks in wireless sensor networks. In our scheme, each node…

Read More

A Distributed CSMA Algorithm For Throughput And Utility Maximization In Wireless Networks

Technology Used: Java 2010 In multihop wireless networks, designing distributed scheduling algorithms to achieve the maximal throughput is a challenging problem because of the complex interference constraints among different links. Traditional maximal-weight scheduling (MWS), although throughput-optimal, is difficult to implement in distributed networks. On the other hand, a distributed greedy protocol similar to 802.11 does not guarantee the maximal throughput. In this paper, we introduce an adaptive carrier sense multiple access (CSMA) scheduling algorithm that can achieve the maximal throughput distributively. Some of the major advantages of the algorithm are…

Read More

On Wireless Scheduling Algorithms For Minimizing The Queue-Overflow Probability

Technology Used: Java 2010 In this paper, we are interested in wireless scheduling algorithms for the downlink of a single cell that can minimize the queue-overflow probability. Specifically, in a large-deviation setting, we are interested in algorithms that maximize the asymptotic decay-rate of the queue-overflow probability, as the queue-overflow threshold approaches infinity. We first derive an upper bound on the decay-rate of the queue-overflow probability over all scheduling policies. We then focus on a class of scheduling algorithms collectively referred to as the α-algorithms. For a given  α >= 1,…

Read More

Bridging Domains Using World Wide Knowledge for Transfer Learning

Technology Used: Dot Net Knowledge and Data Engineering, 2010 A major problem of classification learning is the lack of ground-truth labeled data. It is usually expensive to label new data instances for training a model. To solve this problem, domain adaptation in transfer learning has been proposed to classify target domain data by using some other source domain data, even when the data may have different distributions. However, domain adaptation may not work well when the differences between the source and target domains are large. In this paper, we design…

Read More

Managing Multidimensional Historical Aggregate Data In Unstructured P2P Network

Technology Used: Java / J2EE Knowledge and Data Engineering, 2010 A P2P-based framework supporting the extraction of aggregates from historical multidimensional data is proposed, which provides efficient and robust query evaluation. When a data population is published, data are summarized in a synopsis, consisting of an index built on top of a set of subsynopses (storing compressed representations of distinct data portions). The index and the subsynopses are distributed across the network, and suitable replication mechanisms taking into account the query workload and network conditions are employed that provide the…

Read More

P2P Reputation Management Using Distributed Identities And Decentralized Recommendation Chains

Technology Used: Java Knowledge and Data Engineering, 2010 Peer-to-peer (P2P) networks are vulnerable to peers who cheat, propagate malicious code, leech on the network, or simply do not cooperate. The traditional security techniques developed for the centralized distributed systems like client-server networks are insufficient for P2P networks by the virtue of their centralized nature. The absence of a central authority in a P2P network poses unique challenges for reputation management in the network. These challenges include identity management of the peers, secure reputation data management, Sybil attacks, and above all,…

Read More